	Q1	Q2	Q3	Q4	Q5	Free points	\sum
Total score:	15	20	20	20	15	10	100
Score obtained:						10	

1. Assume that $(\Omega, \mathcal{A}, \mu)$ is a probability space. Let (A_n) be a sequence of measurable sets satisfying

$$\sum_{n=1}^{\infty} \mu(A_n) = \infty.$$

Also assume that, for any $n_1 < n_2 < \cdots < n_k$, whenever we have sets B_{n_1}, \ldots, B_{n_k} with $B_{n_i} = A_{n_i}$ or $A_{n_i}^c$ for each *i*, the following holds:

$$\mu\left(\bigcap_{i=1}^{k} B_{n_i}\right) = \prod_{i=1}^{k} \mu(B_{n_i}). \tag{(\star)}$$

Show that

$$\mu\left(\bigcap_{n=1}^{\infty}\bigcup_{m=n}^{\infty}A_m\right)=1.$$

Hint. You will need the inequality: $1 - x \le e^{-x}$ for x > 0.

- 2. Let (Ω, \mathcal{F}) and (Ω', \mathcal{F}') be measure spaces. Assume that Ω' is countable and \mathcal{F}' is the σ -algebra of all subsets of Ω' .
 - (a) Let $f: \Omega \to \Omega'$ be a function. Show that f is $(\mathcal{F}, \mathcal{F}')$ -measurable if and only if

$$f^{-1}(\{x\}) \in \mathcal{F}$$
 for all $x \in \Omega'$.

- (b) Let f be as in part (a), assume f is $(\mathcal{F}, \mathcal{F}')$ -measurable and let \mathcal{C} be the σ -algebra generated by all sets of the form $f^{-1}(\{x\})$, with $x \in \Omega'$. Let $g : \Omega \to \mathbb{R}$ be $(\mathcal{C}, \mathcal{B}(\mathbb{R}))$ measurable. Show that there exists an $(\mathcal{F}', \mathcal{B}(\mathbb{R}))$ -measurable function $h : \Omega' \to \mathbb{R}$ such that g(x) = h(f(x)) for each $x \in \Omega$.
- 3. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space. Let $f, f_1, f_2, \ldots : \Omega \to \overline{\mathbb{R}}$ be measurable functions such that

$$f_n(\omega) \to f(\omega), \quad f_n(\omega) \ge f_{n+1}(\omega) \ge 0, \quad \omega \in \Omega$$

Show that, if f_1 is integrable, then

$$\lim_{n \to \infty} \int_{\Omega} f_n \, \mathrm{d}\mu = \int_{\Omega} f \, \mathrm{d}\mu.$$

Show that without the assumption that f_1 is integrable, the result need not be true.

4. (a) Let $1 \le p \le q$. Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ that is in $\mathcal{L}^q(\mathbb{R})$ but not in $\mathcal{L}^p(\mathbb{R})$.

- (b) Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ that is in $\mathcal{L}^p(\mathbb{R})$ for all $p \in [1, \infty)$ but is not in $\mathcal{L}^{\infty}(\mathbb{R})$.
- 5. Let $(\Omega_1, \mathcal{F}_1)$ and $(\Omega_2, \mathcal{F}_2)$ be measurable spaces. Assume that \mathcal{F}_2 is the trivial σ -algebra, that is, $\mathcal{F}_2 = {\Omega_2, \emptyset}$. Prove that if $f : \Omega_1 \times \Omega_2 \to \mathbb{R}$ is $(\mathcal{F}_1 \otimes \mathcal{F}_2, \mathcal{B})$ -measurable, then $f(\omega_1, \omega_2)$ does not depend on ω_2 (that is, $f(\omega_1, \omega_2) = f(\omega_1, \omega'_2)$ for all $\omega_1, \omega_2, \omega'_2$.